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It is impor tant  to know the extent to which the procedure of geometric 
quantization depends on a choice of polarization of the symplectic manifold 
that  is the classical phase space. Published results have so far been restricted 
to real and transversal polarizations. It turns out that  there is a natural  
characterization of real transversal Lagrangian distributions and maps 
among them using projective concepts. We give explicit constructions 
for R 2~. 

1. INTRODUCTION 

The geometric quantization theory of Kostant (1970) provides for the 
construction of a .Hilbert space from the complex vector space of sections of 
a line bundle over a symplectic 2n manifold (M, o~). The line bundle has a 
Hermitian metric and connection, with its curvature form the given symplecfic 
form ~. Hermitian operators on the Hilbert space then arise as representa- 
tions of the Lie algebra of smooth real functions on M. To ensure irreducibility 
for these representations in the case of classical observables it is necessary for 
the underlying symplectic manifold to have a polarization (Blattner, 1974; 
Kostant, 1973). 

Definition. A real polarization of a symplectic 2n manifold (M, oJ) is a 
smooth distribution 

D: M--~ TM: m ~ D m 
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such that (i) D,~ is an n-dimensional subspace of TraM with the property that 
for all m ~ M it is maximally isotropic, 

Dm x D m ~_ ker co 

and (ii) D is involutive, its vector fields form a Lie subalgebra. Such a D is 
called an involutive Lagrangian distribution o n  M. Two real polarizations 
D 1, D 2 for M are called transversal if for all rn ~ M they admit the 
decomposition 

TraM = D m  1 0 Dm 2 

The sensitivity of the quantization procedure to changes of polarization 
must still be elaborated. Results published so far have concerned real trans- 
versal polarizations (Blattner, 1974; Kostant, 1973). Moreover, even when M 
is the phase space (cotangent bundle) of a physical system there need not be a 
natural choice of polarization. This is especially apparent for more compli- 
cated systems (like, for example, spinning particles in curved space-time) 
and it has retarded the application of geometric quantization. 

We shall see below how polarizations can be manipulated by exploiting 
their natural links with projective geometry. For definiteness in the con- 
structions we take M = R 2~, which is the classical phase space of a free 
particle in R ~ or of the n-dimensional harmonic oscillator. Nevertheless, 
we expect the procedure to be useful also for more general M. In any 
case, a theorem from projective geometry generates necessary conditions 
for bases of  n-dimensional subspaces of TraM to span Lagrangian 
subspaces. 

2. PROJECTIVE GEOMETRY AND 
REAL TRANSVERSAL POLARIZATIONS 

Most of the projective geometry that we use can be found in Baer 
(1952). Yale (1968, p. 204) gives a proof  of the equivalence between the 
"extended affine space" and the "collapsed vector space" views of a 
projective space. We make use of the latter approach; for any n-dimensional 
vector space V, the associated ( n -  1)-dimensional projective space V 
is {QI Q is a one-dimensional subspace of V}. For the case M = R 2~ we have, 
for all m E M,  TraM = R 2~ and so TraM = R 2~ or RP 2"-1 in more usual 
notation. 

Definition. A correlation (autoduality) cg of a projective space g is an 
inclusion-reversing permutation of its proper subspaces. ~ is symplectic if 
g ~ ~@) for all O E V. 
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Remark.  By "inclusion-reversing" we mean that if W, U are subspaces 
of V, then W _c U i f and  only i f~ (W)  _ if(U). Note that dim V > 1 for this 
definition. 

Theorem 1. A correlation cg of V defines a semibilinear form f2 on V 
such that for each proper subspace W, c g ( W ) =  {glf2(v, w ) =  0, 
Vw e W}. Conversely the mapping cs defined by this equation is a 
correlation if and only if f2 is nondegenerate. 

Proo f  See Yale (1968), p. 260. I 

Theorem 2. If  ~ is a symplectic correlation on V and f2 is the semi- 
bilinear form representing ~f, then 
(i) f~ is skew symmetric and bilinear. 

(ii) dim F is odd and there exists a basis uo, u l , . . . ,  u~_ 1 of V such 
that f2(u2~, u2~ + ~) = 1, but otherwise O(u~, uj) = 0. 

Proof. See Baer (1951), pp. 106-109, also Brauer (1936) for a proof  
making more use Of coordinates. ! 

Remark.  Theorems 1 and 2 allow us to define a symplectic 2-form on a 
vector space Vin terms o fa  symplectic correlation on the associated projective 
space V when we impose the extra condition dr2 = 0. 

Definition. Two subspaces W1, W2 of a projective space V are called 
transversal if and only if W1 @ W2 = V. 

Remark.  Plainly, if W1, W2 are transversal n-dimensional subspaces of a 
2n-dimensional vector space V, then W1, W2 are also transversal disjoint 
(n - 1)-dimensional hyperplanes in V, and conversely. 

We now have the necessary machinery to enable us to characterize the 
real transversal Lagrangian distributions on M = R 2~ in projective geo- 

metrical terms. Essentially, the transversal Lagrangian subspaces of TraM are 

certain (n - 1)-dimensional skew hyperplanes of TraM = RP2~-l--namely,  
those that, with respect to the symplectic correlation cg on R P  2~- 1 defining 
the symplectic 2-form w = dp ~ /x dqa, (a = 1 . . . .  , n) on M = R ~", have 
maximally isotropic n-dimensional associates. This is made more precise in a 
later paper (Campbell, 1978). 

Example. M = R ~. In this case the real transversal Lagrangian distribu- 
tions of M are give .n by those disjoint real projective lines that, with respect to 
the symplectic correlation on R P  a defining the symplectic form ~o = @1 A 
dq~ + @2 ^ dq2 on M, have maximally isotropic 2-dimensional associates. 
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Theorem 2 tells us that  dim Vis odd if a symplectic correlation is defined 
on V. This is what  we would expect since a symplectic 2-form is defined only on 
V o f  even dimension. 

We may use the extra conditions on a basis for V = TraM to give us a 
necessary condit ion for bases o f  n-dimensional subspaces o f  TraM to  span 
Lagrangian subspaces, and therefore define real polarizations o f  R 2~, n > 2. 
This will be o f  use in the classification o f  such polarizations. 

Taking V = TmM = R 2~, n /> 2, Theorem 2 implies the existence o f  a 
basis uo, ul . . . . .  u2,_ 1 o f  TraM such that  

~O(Uo, ud = 1 ] 

~(u2, us) = 1 ), n conditions, but  otherwise w(u~, uj) = 0 

w(u2n- 2, u2,-  i) = 1 

In this case we may take co = dp~ A dq ~ and Uo, ua . . . . .  u2~_a as 

{ e / e p l ,  O/Oql, o/ep2,  O/Oq~, . . . ,  e / e p , ,  O/Oq~} 

We can specify a general basis for any n-dimensional subspace Dm of  TmM 
as a linearly independent set 

B(u3 = {(aouo + . . .  + a2,-luz,-1), . . ., (touo + " .  + t2,-lu2,-1)} 
1 # 

then no element is a multiple o f  another  in the set. An  n-dimensional subspace 
Dm is then Lagrangian if 

/ / 2"a-1  / 2 n - 1  , ( 2 2 1  /2r~--1 \ 

cotklt ~_o a , u , ) + . . . + k n t ~  hu, ) 11,,=o a,u,) + . . . + l n t ~  hu~)) 

= 0 for  all vectors 

/ 2 n - 1  \ / ~ n - 1  \ '~  

In fact, for n >~ 2, as can be seen f rom the conditions o f  the theorem, 

u2,+1 ~ Dm = u2,---(D-2 J' Vi 

is a necessary condit ion for Dm to be Lagrangian. It  is not  sufficient, however, 
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since B(u~) = {Uo, (u~ + u2)}, for example, satisfies the condition but does not 
span a Lagrangian subspace. From the set of  all such B(u~) we can choose 
those spanning Lagrangian subspaces by inspection. 

Example. TraM = R 4 has basis uo, ul, u2, u3 such that 

oJ(uo, ul) = 1 

o~(u2, u~) = I 

Otherwise o~(u~, uj) = 0, with ~o = dp~ /x dq~ + @2 A dq2 and u0, uz, u~, ua as 

Let 

{O/Opl, O/Oql, o/Op~, O/Oq2) 

{(a0uo + azul + a2u2 + aau3), (bouo + blu~ + b2u2 + baua)} 

be a basis for a two-dimensional subspace of T~M. Then the necessary 
condition for such bases to span Lagrangian subspaces is 

f u o E D m ~ u l q ~ D ~ , u 2 ~ D r ~ u a ~ D m t  

For  example {Uo, u~} and {ui, Ua} are bases for Dm ~, Dm 2 satisfying this con- 
dition. The results of  Theorem 2 also show that they span Lagrangian sub- 
spaces. Since {u0, u~, u2, ua} span T~M, Dm I -t- Dm ~ = TraM. Also Dm I O Dm 2 

= 0; SO Dm 1, Drn 2 are transversal. 

Remark. For more general systems M va R 2n. However, given a basis 
for each TmM, a similar procedure can be followed to define a necessary 
restriction on the set of  all bases for possible Lagrange subspaces. Of  course, 
any manifold if smooth has at least one chart about each of  its points and 
every such chart about  m ~ M determines a basis for T~M. It remains to 
choose one basis for each point in any particular situation. Presumably the 
choice should be made smoothly, so what we require is a smooth section of 
the frame bundle, LM. Some manifolds do not possess such sections; those 
tha t  do are called parallelizable. The only compact 2-manifolds that are 
parallelizable are the Klein bottle and the toms.  The only spheres that are 
paralMizable are S 1, S a and S 7, all of which have odd dimension. We note 
that, for a 2n-manifold, the frame bundle is a principal fiber bundle with 
structure group Gl(2n; R). Moreover, a connection in it will provide horizon- 
tal lifts of  vector fields on M and hence parallel transport  of  bases along 
curves in M. 
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3. CHANGING POLARIZATIONS 

Blattner (1974) has discussed maps between real and transversal polariza- 
tions D 1, D 2 of  a symplectic manifold M in terms of the corresponding 
symplectic automorphisms on M. These symplectic automorphisms induce 
diffeomorphisms on a line bundle above M which is used in the formulation 
of  geometric quantization. If  D 1, D 2 are "unitarily related" (Blattner, 1974, 
p. 152), then to each line bundle diffeomorphism may be intrinsically asso- 
ciated a unitary operator on the appropriate Hilbert space. 

It turns out that we can also discuss maps between real transversal 
polarizations by using projective geometry. In addition it appears that there 
is an intriguing link between the two approaches. 

Definition. A permutation f o r  Vis aprojective transformation if and only 
if there exists a linear transformation g: V-+ V such that f~  = g0 for all 
r  

Theorem 3. The general linear grou.p G for a vector space V induces 
a group, the projective group, of transformations of V. 

Proof. See Yale (1968), p. 234. II 

Remark.  Let V = TmM = R 2~. Consider transversal Lagrangian sub- 
spaces Dm 1, D,,L The nonsingular maps among them are given by certain 
projective transformations in RP2"- l - -namely,  those among the skew 
(n - 1)-dimensional hyperplanes in R P  2~-1 associated with D,d, Dm ~ by 
means of the correspondence between the symplectic correlation on R P  2~- 1 

and the symplectic form dp~ A dq ~ (a = 1 . . . . .  n) on M. 

4. C O N C L U D I N G  R E M A R K S  

It follows from the fundamental theorem of projective geometry that 
distinct points in R P  1 are related by a unique projective transformation. 
Accordingly, real transversal polarizations of M = R2are related by unique 
linear transformations on Tr, M.  

For the vector space V = R 2~ we have the general linear group of its 
automorphisms, Gl(2n; R). When scalar multiples are factored out we obtain 
the appropriate projective group PGl(2n; R). This is because a point in the 
projective space V is an equivalence class of points in V under the relation of  
collinearity. In consequence, maps among real transversal Lagrangian 
distributions are governed by elements from PGl(2n; R). So with a suitable 
projective interpretation for the involutive condition we can characterize real 
transversal polarizations in projective geometry and interpret maps among 
them via the projective group. Also we have a scheme for finding real 
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transversal pairs of  polarizations. For  this to be unambiguous  in the general 
case we need the existence o f  a section o f  the frame bundle. 

It  is an intriguing fact for geometric quantization that  symplectic 
structures have also a significant role in projective geometry. Linear trans- 
formations leaving a symplectic 2-form invariant correspond to projective 
t ransformations commut ing  with a symplectic correlation. This is discussed 
to some extent by Dieudonn6 (1951). By this means we have a projective 
f ramework for handling the symplectic automorphisms on a symplectic 
manifold that  arise in changes o f  real transversal polarization. It  remains to 
be seen what  restrictions will be implied for PGl(2n; R) to preserve the 
required symplectic symmetries. It  is an open question whether there exists a 
projective analog for the geometric quantizat ion procedure of  associating a 

�9 unitary operator  with each diffeomorphism on the quantizat ion line bundle 
induced by symplectic automorphisms of  the underlying manifold. 

A C K N O W L E D G M E N T S  

The authors would like to thank Professor Abdus Salam, the International Atomic 
Energy Agency, and UNESCO for hospitality at the International Centre for Theoretical 
Physics, Trieste. Thanks are also due to the Royal Society for the award of a European 
Science Exchange Programme Fellowship for C. T. J. Dodson and to the Italian Govern- 
ment and the Science Research Council for the award of Research Scholarships to 
P. Campbell. We are also indebted to Professor David Simms for invaluable comments 
on a preliminary version of this work. 

R E F E R E N C E S  

Baer, R. (1952). Linear Algebra and Projective Geometry, Pure and Applied Mathematics 
Series No. 2. Academic Press, New York. 

Blattner, R. J. (1974). Quantization and Representation Theory, Harmonic Analysis on 
Homogeneous Spaces, Moore, C. C., ed. A.M.S. Proceedings of the Symposium on 
Pure Mathematics No. XXVI. 

Brauer, R. (1936). Bulletin of the American Mathematical Society, 42, 247. 
Campbell, P. (1978). International Journal of Theoretical Physics (to be published). 
Dieudonn6, J. (1951). Memoirs of the American Mathematical Society, 2. 
Kostant, B. (1970). Lecture Notes in Mathematics, Vol. 170. Springer, Berlin. 
Kostant, B. (1973). Symplectic Spinors, Conv. di Geom. Simp. Fis. Math., Indam, Rome. 

Also (1973). In Symposia on Mathematics Series. Academic Press, New York. 
Yale, P. B. (1968). Geometry and Symmetry. Holden-Day Inc., San Francisco. 


